

Table of Contents

Background	04
Need	 06
Solutions	 13
Benefits	 23
Evaluation	 26
Conclusion	28
References	 29

The Evolution of Smart Connected Buildings Copyright © 2025 Published by Fitzemeyer & Tocci Associates, Inc. 300 Unicorn Park Drive, 5th Floor Woburn, MA 01801

All rights reserved. Except as permitted under U.S. Copyright Act of 1976, no part of this publication may be reproduced, distributed, or transmitted in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

Design by Fitzemeyer & Tocci Associates, Inc.

Visit our website at www.f-t.com

About the Guide

This guide explores the evolution of smart, connected buildings and their impact on the built environment. From early automation to today's intelligent, data-driven ecosystems, it highlights how advances in IoT, AI, digital twins, and analytics are reshaping design, construction, and facility management. The content addresses both global challenges, such as climate change, energy efficiency, and resource scarcity, and local needs like occupant comfort, safety, and operational cost control. It also outlines best practices in security, interoperability, data management, and workforce readiness to help stakeholders navigate complexity with confidence.

This guide offers practical insights into the benefits of smart building adoption, including reduced operating costs, enhanced occupant well-being, and improved asset value. Ultimately, it positions smart buildings as essential, future-ready solutions that deliver sustainability, resilience, and human-centered performance in an increasingly digital and resource-constrained world.

Learning Outcomes

This guide will help the reader:

Outcome 1

Demonstrate Value to Owners and Operators: Showing how smart building technologies generate measurable benefits—such as reduced operating costs, extended asset life, and improved property value—making a strong business case for adoption.

Outcome 3

Understand Core Innovations: Describing the key technologies driving smart building evolution—including AI, machine learning, IoT sensors, digital twins, cloud platforms, and renewable integration—and how they transform building performance and adaptability.

Outcome 2

Explain Multifaceted Benefits for Stakeholders: Identifying how smart buildings address energy efficiency, occupant comfort, safety, health, and operational resilience, linking these to global challenges (climate change, resource scarcity) and local needs (cost control, well-being).

Outcome 4

Recognize the Importance of Integration: Explaining how interoperability, network connectivity, and data-driven management create intelligent ecosystems, emphasizing the role of cybersecurity, open standards, and unified platforms in delivering safe and future-ready buildings.

Key Takeaways

- Recognize the importance of cybersecurity as a core design principle in smart buildings.
- Gain a clearer understanding of future requirements for smart building systems and how today's facilities can prepare for seamless integration.
- Develop insight into emerging policies and regulatory trends shaping the adoption of smart, sustainable building practices.

The Authors

Matthew Merli, PEPrincipal, Director of Client Services

Matthew Fitzemeyer, EIT Associate Principal, PMO Manager

Ryan McCarthy, PE
Plumbing/Fire Protection Technical
Specialist

Timothy Piehl, PEElectrical Engineering Manager

BACKGROUND

Buildings are no longer just walls, roofs, and systems working in the background. Thanks to advances in the Internet of Things (IoT), artificial intelligence (AI), and automation, they are becoming smart, connected ecosystems that can adapt in real time. This shift is especially powerful in places like hospitals, universities, and research labs, where precision and responsiveness are critical.

In the past, building operations were mostly reactive. Simple thermostats and timed controls could only do so much, and maintenance often meant waiting for something to break. Today, sensors act as the "eyes and ears" of a facility, tracking energy use, air quality, occupancy, and equipment performance around the clock. Al then uses this data to predict issues, optimize systems like HVAC and lighting, and cut energy waste before problems arise.

Another game-changer is the digital twin: a virtual model of a building that mirrors real-time conditions. With a digital twin, managers can test different scenarios—like adjusting HVAC settings or rethinking floor layouts—without disrupting actual operations. In critical environments, this helps staff troubleshooting faster and make better-informed decisions. But with greater connectivity comes greater risk. Building systems tied to IT networks can create openings for cyberattacks if security is overlooked.

Weak passwords, outdated software, or poor network design can give intruders access not only to building controls but also to sensitive data or even safety systems. That's why cybersecurity must be built into smart building design from day one, alongside energy efficiency and user comfort.

Looking ahead

Smart buildings will continue to evolve into environments that are efficient, sustainable, and responsive to the people who use them. They'll anticipate maintenance needs, adjust automatically for comfort, and learn from past performance to keep improving.

In doing so, they are reshaping real estate, city planning, and everyday life—bringing us closer to the cities of the future.

Smart, connected buildings aren't just a trend - they are becoming a necessity.

Multiple global challenges and local needs are converging to make them essential for how we design, operate, and manage facilities.

Addressing Global Challenges

Climate Change & Sustainability

Building consume about a third of the world's energy and produce more than a quarter of CO_2 emissions. Smart systems help reduce this footprint by managing heating, cooling, and lighting in real time, cutting waste and supporting renewable energy integration. They also make it easier to participate in demand response programs, helping stabilize the grid while lowering emissions. Beyond energy, smart water and waste systems conserve resources and support sustainability goals.

Resource Scarcity

Water, raw materials, and usable space are becoming increasingly scarce and costly. Traditional operations often waste these resources—cooling empty rooms or overwatering landscapes. Smart systems address these challenges by monitoring usage, detecting leaks, and optimizing space, ensuring resources are used efficiently and responsibly.

Driving Efficiency and Saving Costs

Lower Operating Costs

Rising energy, maintenance, and labor costs are putting pressure on building owners and operators. Smart systems deliver savings through Al-driven energy optimization, predictive maintenance, and targeted troubleshooting. This reduces energy bills, extends equipment life, and helps technicians work more efficiently—turning operational savings into real financial gains.

Boosting Productivity

Buildings have a direct impact on how people work, learn, and heal. Smart environments that maintain ideal temperature, lighting, and air quality improve comfort, reduce complaints, and support overall well-being. In offices, this means fewer sick days and better focus; in hospitals, it supports patient recovery; in schools, it aids learning. For facility staff, automation reduces reactive "firefighting" and allows more proactive service delivery.

Meeting Occupant Expectations

Comfort & Well-being

People expect healthy, personalized spaces. Smart buildings provide clean air, balanced lighting, and the ability for individuals to adjust conditions to their liking. Continuous monitoring of air quality and responsive controls ensure not only comfort but measurable health benefits, from reduced symptoms of "sick building syndrome" to improved cognitive function. Sick Building Syndrome is a condition where occupants of a building experience health issues that are linked to time spent in that building, often due to poor indoor air quality

Health & Safety

Smart systems actively contribute to safety. From touchless access and dynamic ventilation during health crises, to intelligent fire and security systems that guide people in emergencies, these technologies enhance resilience and occupant trust. Even small features—like lighting that brightens in occupied parking areas—improve safety in daily use.

Leveraging Technology

Rapid Innovation

IoT, Al, and digital twins are evolving quickly, creating new opportunities for buildings to self-adjust, predict failures, and continuously improve. Together, these technologies enable features like adaptive controls, real-time anomaly detection, and scenario planning. Staying current ensures investments don't become obsolete and that buildings remain adaptable.

Data-Driven

Smart buildings generate a wealth of data—far more than traditional systems can offer. When used effectively, this information provides powerful insights that transform how facilities are managed. Teams can compare energy performance across floors, identify underutilized spaces, and fine-tune systems continuously rather than waiting for problems to arise. This shift to data-driven operations allows buildings to perform at levels once impossible with manual management.

Navigating Complexity and Risk

Interoperability

Without common standards, "smart" buildings risk becoming patchworks of disconnected systems. Adopting open protocols and data models ensures HVAC, lighting, security, and other systems work together. Interoperability makes it easier to expand capabilities later, reduces vendor lock-in, and protects against obsolescence.

Cybersecurity

As systems become more connected, the potential attack surface expands. This makes cybersecurity essential, not only to prevent nuisance disruptions, but to guard off against critical threats, such as shutting down HVAC in a hospital. Protecting smart buildings requires secure networks, strong access controls, regular testing, and ongoing staff training. Security must be treated as mission-critical from design through daily operations.

Investment Justification

Upfront costs can be significant. To gain buy-in, owners and managers must show clear ROI—reduced energy and maintenance costs, higher property values, and improved tenant retention. Smart, sustainable buildings often command rent premiums and higher sale prices, making them attractive long-term investments. Tools like phased rollouts, performance-based contracts, and incentives can further reduce financial risk and make the business case compelling.

Smart, connected buildings address pressing global challenges, improve efficiency and safety, meet modern occupant expectations, and make the most of rapidly advancing technologies. They are no longer optional—they represent the future of how we design, manage, and experience the built environment.

Educating and Guiding Stakeholders

The push toward smart, connected buildings spans multiple, from architecture and engineering to IT and facility management, and involves a wide range of stakeholders. To ensure effective collaboration on smart building initiatives, education and guidance are essential.

Policy Insights

Governments are increasingly mandating energy benchmarking and disclosure for large buildings.

Architects and Designers

Professionals who plan new buildings or major renovations need to understand how to integrate smart capabilities from the earliest design phase. This means designing with connectivity in mind (e.g., space for sensor networks, flexible layouts for changing tech) and working closely with technology consultants so that the building's physical form complements its digital intelligence. Architects are increasingly expected to deliver "smart-ready" designs, and this guide provides them with foundational knowledge of what that entails.

Facility Managers

The day-to-day operators of buildings must adapt to a more digital, analytics-driven approach to maintenance and management. Traditional facility management skills (HVAC, electrical, and plumbing know-how) are now being complemented with data analysis, cybersecurity awareness, and IT network basics. Facility managers need guidance on how to effectively use the new tools at their disposal – dashboards, automated workflows, IoT alerts – to run buildings more efficiently. They also need to understand best practices for maintenance in an IoT-enabled environment (for example, how often to calibrate sensors, or how to prioritize alerts from a fault detection system).

Developers and Investors

Smart building features are becoming key market differentiators, drawing increasing interest from real estate developers and property investors However, they may lack a technical understanding of the systems and their true value. This guide helps translate technical jargon into business outcomes. For instance, it explains how smart building features can lead to higher tenant demand, higher rents, or future-proofing buildings against regulatory changes (like stricter energy codes). By understanding market trends and the value proposition of smart properties, investors can make more informed decisions on where to allocate capital and how to price developments.

Technology Providers and Integrators

Companies that provide building technologies (sensors, software platforms, control systems) benefit from understanding the holistic needs of the built environment. This guide highlights the key challenges faced by building owners and managers, helping technology providers better align their solutions with real-word demands. It also emphasizes the importance of open standards and interoperability, which tech providers need to embrace to stay relevant in a rapidly evolving market.

For integrators, firms that install and integrate systems, this guide calls attention to emerging priorities like IT/OT convergence (the blending of information technology with operational building systems and the need for robust cybersecurity practices during system integration process.

Policymakers and Regulators

Governments and regulatory bodies play a key role in shaping the future of smart buildings through standards, codes, and incentive programs. To craft effective policies —such as tax credits for energy-saving systems or updated building codes that encourage smart infrastructure— policymakers need a clear understanding of what smart building technology can achieve and deliver.

This not only includes energy efficiency, but also emerging issues like data privacy, for example: how occupant data is collected, stored, and used. This guide can help policymakers stay informed about the latest advancements and their real-world impact, inviting them to design forward-looking regulations and incentives that drive the adoption of smart, sustainable building practices across communities.

In summary,

The need for smart, connected buildings stems from global challenges like sustainability and efficiency, economic and operational pressures, higher occupant demands, rapid technological change, and the increasing complexity of building systems. Addressing these needs requires shared understanding and collaboration across many stakeholders, which is exactly what this guide aims to facilitate.

Implementing smart building technology comes with challenges, but each can be met with strategic solutions. In this section, we explore practical approaches in key areas such as integration, security, cost management, data governance, and workforce development.

Addressing Interoperability and Integration

For facility managers, interoperability is what makes a smart building practical and sustainable. It allows systems to be maintained, upgraded, and operated efficiently over the building's lifecycle. The goal then is not just technical integration, but creating an environment where facilities staff can monitor, control, and optimize all building systems without being locked into a single vendor or struggling with silos.

Standarization for Longevity

Choosing equipment and controls that use open communication standards such as BACnet, Modbus, or KNX means facilities teams aren't tied to one vendor for service or future upgrades. Standardized tagging (like Project Haystack or Brick Schema) also makes it easier for staff to understand and manage data across different systems. This reduces training burdens and ensures the facility remains flexible as new technologies are adopted.

Unified Platforms for Daily Operations

A vendor-neutral building operating system (BOS) or integration platform allows staff to see HVAC, lighting, security, and other systems on a single dashboard. This simplifies monitoring, reduces the need to learn multiple interfaces, and allows rules or automations to be set across systems. For example, occupancy data could automatically adjust HVAC and lighting together, helping staff save energy without extra manual input.

Facilities are rarely static. Needs change, tenants come and go, and technology evolves. A modular approach to controls and infrastructure makes it easier to expand capacity, replace components, or add new systems without major disruption. By building spare capacity into networks and control systems, facilities can upgrade incrementally and cost-effectively.

Digital Twins as an Operations Tool

For facilities teams, a digital twin is more than a design concept—it's a live tool that mirrors building performance in real time. It can help staff troubleshoot issues, test changes virtually before implementing them, and plan maintenance more effectively. For example, facilities staff can simulate the impact of reducing airflow in specific zones before making physical adjustments, minimizing risk while improving efficiency.

Facilities Perspective

From a facilities perspective, interoperability protects long-term investments, simplifies operations, and gives staff the flexibility to adapt as technology and building needs evolve.

Interoperability ensures the building can stay smart, efficient, and resilient throughout its lifecycle.

Mitigating Cybersecurity Risks

Security must be treated as a core design principle, not an afterthought. The following best practices form a layered defense for smart buildings:

Security by Design

Integrate cybersecurity from the start. Select devices and software with strong security features (e.g., encryption support, vendor patching) and design networks with security in mind. Replace default passwords, isolate or upgrade legacy systems, and align all stakeholders—architects, engineers, IT, and vendors—around the principle that security is as essential as comfort and efficiency.

Network Segmentation

Divide networks into zones (e.g., HVAC, security cameras, corporate IT) with strict firewall rules. Segmentation prevents attackers from moving freely if one device is compromised. Dedicated operational technology (OT) networks, separated from IT, further reduce risk.

Regular Audits and Testing

Treat digital infrastructure like physical systems: inspect it regularly. Conduct audits, vulnerability scans, and penetration tests to uncover weaknesses and apply fixes promptly. Routine testing ensures defenses adapt as threats evolve.

Encryption and Authentication

Encrypt all data in transit and at rest and enforce strong authentication. Use MFA, unique credentials, and role-based access to prevent unauthorized access. Even machine-to-machine communications should be authenticated with keys or certificates.

Employee Training

Human error is a leading risk. Train staff to recognize phishing, follow secure practices, and respond to incidents. Just as fire drills prepare for emergencies, cyber drills prepare teams to react quickly and minimize damage.

Threat Intelligence Sharing

Engage with industry groups, peer networks, and government advisories to stay ahead of new vulnerabilities. Sharing intelligence helps the community strengthen defenses collectively.

By embedding security into design, operations, and culture, smart buildings can deliver innovation without becoming vulnerable to digital threats.

Overcoming High Upfront Investment Costs

Smart building technologies can deliver long-term efficiency and comfort, but the upfront capital required can be a challenge. Both design teams and facility managers play a role in making these projects financially viable.

Phased Implementation

Start with upgrades that have the fastest payback—such as LED lighting with smart controls or HVAC optimization—and expand over time. On the design side, this means planning infrastructure early (e.g., adding extra conduit, network capacity, and modular controls) so future phases can be added without costly retrofits. For facilities teams, early wins demonstrate savings, justify budgets, and build confidence for larger rollouts.

Performance-Based Contracts

Energy service companies (ESCOs) and technology providers can deliver upgrades under contracts where payment depends on verified performance. Designers can help scope systems that align with measurable outcomes, while facility teams benefit from reduced upfront risk and a clear link between investment and savings.

Energy-as-a-Service, green bonds, and utility on-bill financing are increasingly available. These shift capital costs off the owner's balance sheet and allow payment through predictable service fees or future savings. MEP engineers can guide owners toward technologies that qualify for such financing, while facility managers ensure the systems deliver consistent operational savings.

ROI and Business Case Development

A strong ROI analysis should include not only energy savings, but also reduced maintenance, longer equipment life, improved occupant satisfaction, and even higher asset value. Designers can contribute with case studies and performance modeling, while facilities teams provide real-world data on avoided repairs or downtime. Together, they make the financial case more compelling to leadership and investors.

Government Incentives and Utility Programs

Tax credits, rebates, grants, and demand response programs can significantly reduce payback time. Designers should specify equipment and systems that qualify, while facilities staff can track and document performance for compliance and payouts. Certifications such as LEED or Energy Star add both financial and reputational value.

When design teams plan for scalability and qualification, and facilities staff operate with efficiency and performance tracking in mind, smart building investments become far easier to justify. Working together, they can combine phased planning, creative financing, solid ROI, and incentives to overcome cost barriers and unlock the full potential of smart technologies.

Addressing Data Management Privacy

Smart buildings thrive on data, ranging from energy use and occupancy to security logs and equipment performance. But with that data comes responsibility. Managed well, it improves efficiency and comfort. Managed poorly, it can raise privacy concerns or even legal risks. A balanced approach builds trust with occupants while ensuring systems remain secure and effective.

Clear Governance Policies

Set formal rules for what data is collected, how it's used, who owns it, and how long it's stored. For example, occupancy data may be aggregated by floor rather than tied to individual people, and badge access logs might be anonymized or deleted after a set period. In multi-tenant facilities, governance should also ensure each tenant's data stays private and boundaries are clear. For design teams, this means configuring systems to support these policies from the start. For facilities managers, it means enforcing and communicating with them day-to-day.

Anonymization and Aggregation

Whenever possible, strip out personal identifiers and use data in aggregate. A system can count "30 people on this floor" without knowing who they are. Sensors and cameras can be configured to detect presence without recording personal details. By focusing on trends and totals, buildings get the insights they need while protecting privacy.

Consent and Transparency

Occupants should know what is being collected and why. In workplaces, this may be done through HR policies or onboarding. In commercial or public spaces, signage or apps can explain how systems work—for example, assuring occupants that "this sensor only detects motion to control lighting; it does not record audio or video." Being upfront fosters trust and makes occupants more willing to embrace smart systems.

Edge Computing for Privacy and Speed

Process sensitive data locally rather than sending everything to the cloud. Edge devices can handle analytics in the building, sending only what's necessary—like "5 people in Room 101" instead of a continuous video feed. This reduces exposure of sensitive data, speeds up response times, and aligns with privacy best practices like data minimization.

Respecting privacy isn't just about compliance, it's essential for occupant trust and successful adoption. Strong governance, thoughtful system design, and transparent communication ensure that smart building data serves people, not the other way around.

Bridging Skill Gaps and Workforce Development

Smart building technologies bring powerful new capabilities, but they also require knowledge that many traditional facilities and design teams may not yet have. To ensure these systems run smoothly, organizations need to invest in people as much as in technology.

Focused Training and Upskilling

Provide targeted training for facilities managers, engineers, and technicians on smart building operations. This could include data-driven energy management, networked building systems, or the basics of AI and automation. Cross training between facilities staff (OT) and IT staff is especially valuable, since many problems sit at the intersection of equipment and networks. Training should also cover resilience, knowing how to manually operate systems if automation fails, or how to respond to a cybersecurity incident.

To support this shift, industry groups such as IFMA now offer courses and certifications in smart facility management and sustainability.

Collaboration and Evolving Roles

Smart buildings blur the lines between facilities and IT. Success often comes from creating interdisciplinary teams where HVAC specialists, electricians, IT professionals, and data analysts work together. Some organizations are even introducing new hybrid roles, such as "Smart Building Systems Manager," who understands both building systems and networks. For design teams, involving IT early in system architecture decisions and involving facilities staff in IT-related planning helps ensure systems work seamlessly together. Each group brings critical expertise: facilities teams understand how the building operates, while IT brings expertise in networks and cybersecurity..

Partnership and Talent Development

Engage with universities, trade schools, and industry associations to build a pipeline of future talent. Many schools now offer programs in intelligent buildings, automation, and sustainable design. By supporting internships, research projects, or industry consortiums, organizations not only help shape the next generation of professionals but also gain early access to new ideas and future employees. Apprenticeships or trainee programs focused on smart building technologies can also attract fresh talent to this evolving field.

A smart building is only as strong as the people who run it. By upskilling current staff, fostering collaboration across disciplines, and cultivating new talent, organizations can ensure their facilities keep pace with advancing technology and deliver their full potential.

Implementing smart building solutions transforms how facilities are designed, managed, and experienced. The benefits go beyond efficiency and sustainability, they also enhance user experience, and long-term asset value.

Rethinking Building Management

Smart buildings shift operations from reactive to proactive. Instead of fixing equipment when it breaks, predictive analytics and AI anticipate issues and adjust systems automatically. Facility managers move from "firefighting" to strategic oversight, while occupants engage directly with their environment through apps or automated systems that adapt to their preferences. This redefines the building as a dynamic, responsive service—not just a static shell—delivering comfort, safety, and efficiency while enabling new business models like flexible "space-as-a-service."

Energy bills, maintenance costs, and labor needs all shrink as automation and predictive tools optimize operations. Savings improve operating income and free up budgets for other priorities.

Asset Value & Marketability

Smart, sustainable buildings command higher rents, attract tenants faster, and enjoy stronger resale values. Features like energy efficiency, wellness, and connectivity are now market differentiators, protecting long-term asset value.

Reputation & ESG

Operating a smart building signals leadership, innovation, and responsibility. Measurable data on energy savings, emissions, and air quality strengthen ESG reporting, satisfy investors, and improve brand image.

Maximizing Energy Efficiency and Sustainability

Smart systems directly cut energy use and emissions:

- Al-driven optimization predicts demand and adjusts systems to minimize waste.
- Fault Detection & Diagnostics (FDD)
- Renewables & storage are integrated seamlessly, allowing buildings to produce, store, and even sell energy.
- Dynamic load management shifts demand to off-peak times, lowering costs and supporting the wider grid.

These strategies can reduce consumption by 20-30% or more, future-proofing assets against energy costs and carbon regulations. Similar intelligence can reduce water use,

Enhancing Occupant Experience and Well-Being

Smart buildings place people at the center:

- Personalized control allows individuals to adjust lighting or temperature from an app or desk-level controls.
- Superior indoor air quality sensors keep spaces fresh, healthy, and productive.
- Smart navigation & space use help people find rooms, desks, or colleagues easily, while optimizing how facilities are used and cleaned.
- Predictive comfort & assistance anticipate needs—like lowering blinds before a room overheats—while voice assistants and automation make interactions seamless.

The result: healthier, more comfortable environments that boost productivity, satisfaction, and well-being.

Optimizing Maintenance and Operations

Smart technologies transform facility operations:

- Predictive maintenance identifies problems early, reducing downtime and extending equipment life.
- Digital twins let teams simulate changes or plan service with minimal disruption.
- Automated workflows generate work orders, assign tasks, and manage inventory without manual input.

This leads to leaner, more effective operations teams, fewer crises, and longer asset lifespans—all at lower cost.

For facilities teams, evaluation is not a one-time exercise but an ongoing process to ensure systems are working as intended, delivering savings, and supporting occupant comfort. A structured approach keeps operations on track and provides clear evidence of value.

Define Practical KPIs

Metrics should reflect everyday goals: energy use, uptime of critical systems, comfort complaints, air quality, and maintenance response times. Having these benchmarks in place allows facility managers to measure progress against both original goals and daily operational needs.

Establish Baselines and Benchmarks

Understanding how the building performed before upgrades—and how it compares to similar facilities—gives staff context for improvements. Benchmarking against peers or industry standards also helps justify budgets and demonstrate results to leadership.

Continuous Monitoring and Reporting

Dashboards and automated reports turn system data into actionable insights. Facility teams can track performance in real time, receive alerts when systems deviate from expected ranges, and generate clear reports for stakeholders. This makes it easier to identify problems early, plan maintenance, and ensure the building continues to run at peak efficiency.

Occupant Feedback as a Performance Indicator

Comfort and satisfaction are as important as energy savings. Gathering feedback through surveys or help-desk reports helps facilities staff understand how people actually experience the building. This qualitative input ensures improvements don't come at the expense of comfort.

Financial Tracking and ROI

Facilities teams need to show that smart building investments pay off. Tracking actual savings in energy, maintenance, and operations against projected costs builds a case for continued investment and helps prioritize future upgrades.

Third-Party Validation

Independent evaluations or certifications (LEED, WELL, or third-party M&V) provide credibility and external confirmation of results. This can be valuable for institutional reporting, stakeholder confidence, or when seeking budget approvals for expansion.

Iterative Improvement

Evaluation is ongoing. Lessons learned—such as underperforming sensors or unused features—inform adjustments and future planning. Formal reviews each year help facilities teams adapt to changing building needs and evolving technology.

For AEC teams and facilities management, evaluation means turning data and feedback into continuous improvement. It provides the visibility needed to run efficient, comfortable, and reliable buildings while proving long-term value to stakeholders.

CONCLUSION

The evolution of smart, connected buildings is not just about adding new technologies; it's a fundamental shift in how we design, operate, and experience the built environment. What were once static structures are now becoming responsive systems that adapt in real time to occupants, operations, and the world around them. Enabled[VG1] by AI, IoT, digital twins, cloud platforms, and advanced analytics, these buildings deliver measurable improvements in efficiency, sustainability, and user experience.

The benefits of smart, connected buildings are extensive. They reduce energy use and operating costs, conserve resources, and support climate goals while boosting asset value and marketability for owners. For occupants, they create healthier, safer, and more personalized environments that enhance well-being and improve productivity. Facilities teams gain access to powerful tools for proactive, data-driven management, shifting from reactive troubleshooting to strategic oversight, while digital twins and predictive maintenance drive resilience and reliability across critical systems.

At the same time, smart buildings align with investor priorities, corporate ESG commitments, and evolving regulations, positioning organizations at the forefront of innovation and responsibility. Yet this transformation also requires careful navigation: cybersecurity must be treated as foundational, interoperability must be prioritized through open standards, and new skills and cross-disciplinary collaboration are essential for success. The momentum, however, is undeniable—falling technology costs, regulatory drivers, and rising occupant expectations are converging to make smart buildings not a future concept but a present-day priority.

Looking ahead, buildings will increasingly act as active participants in larger smart city ecosystems, balancing energy with the grid, supporting new mobility systems, and continuously learning to optimize themselves. In short, the smart building revolution is here. For owners, facility managers, designers, investors, and policymakers, the opportunity is not only to keep pace but to lead—transforming buildings into intelligent, resilient, and sustainable environments that support people, strengthen organizations, and safeguard our planet's future.

References

3D Digital Twins. (2024, July 23). Retrieved from Bright Spaces: https://brightspaces.ai/news/3d-digital-twins-the-key-to-proactive-facility-maintenance-and-management

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2010). ANSI/ASHRAE Standard 62.1-2010. ASHRAE Standard Ventilation for Acceptable Indoor Air Quality.

Basu, R., & Hayes, B. (2022). The Definitive Guide to Smart Building Strategies. Journal of Facility Innovation. Bharadwaj, G. (2025, February 3). Understanding the ROI of a Smart BMS. Retrieved from Know Your Building: https://knowyourbuilding.com/okay-heres-a-blog-post-focused-on-understanding-the-roi-of-a-smart-building-management-

system/#:~:text=Typically%2C%20a%20Smart%20BMS%20can,directly%20into%20lower%20operating%20costs

Bletterie, P. (2023, April 25). Smart Buildings and User Comfort . Retrieved from Alcatel-Lucent: https://www.alenterprise.com/en/blog/smart-buildings-user-comfort#:~:text=Predicting%20needs%3A

Data on the Market Value of Smart Buildings . (2019). Retrieved from SageGlass / MIT Real Estate Research: https://www.sageglass.com/industry-insights/data-market-value-smart-buildings#:~:text=The%20Results

Edge Computing: The Future of Smart Buildings. (2025, June 15). Retrieved from NumberAnalytics: https://www.numberanalytics.com/blog/edge-computing-future-of-smart-buildings#:~:text=For%20example%2C%20a%20study%20by,uptime%20by%20up%20to%2075

Froehlich, A. (2024, September 24). Avoiding 5 of the Most Common Smart Building Cybersecurity Pitfalls. Retrieved from Buildings Magazine: https://www.buildings.com/safety-security/cybersecurity/article/55142123/avoiding-5-of-the-most-common-smart-building-cybersecurity-pitfalls

International Energy Agency. (2023). Buildings - Tracking Clean Energy Progress. Retrieved from International Energy Agency: https://www.iea.org/energy-system/buildings

IoT Sensors for Real Estate and Facility Management – Benefits & Use Cases . (n.d.). Retrieved from Planon Software: https://planonsoftware.com/us/glossary/iot-sensors-real-estate-

 $fm/\#: \sim : text = loT\% 20 sensors\% 2C\% 20 such\% 20 as\% 20 motion, iot\% 20 directly\% 20 benefits\% 20 office\% 20 users the first of the$

Meadows, D. (2019). The Digital Twin in Building Operations: Redefining Facility Management. Smart Buildings Summut.

References

Memoori Research. (2025, March 27). Open Standards Driving Smart Building Technology Interoperability in 2025. Retrieved from Memoori: https://memoori.com/open-standards-interoperability-smart-buildings-2025/#:~:text=Key%20frameworks%20like%20Brick%20Schema%2C,other%20liaisons%2C%20to%20enhance%20interoperability

Murtezaoglu, I. (2025, March 22). Refitting History: Empire State Building and How It Became an Energy-Efficient Skyscraper. . Retrieved from Parametric Architecture: https://parametric-architecture.com/empire-state-building-energy-efficient-skyscraper/?srsltid=AfmBOoqLgUA1aPHDKgDax1t77VshBSf_LKbuW-Sepz-S4JLL6RwBxrYa#:~:text=This%20iconic%20structure%2C%20one%20of,and%20cut%20carbon%20emissions

Subramanian, N. (2025, April 5). The Edge, Amsterdam: A Paradigm of Smart and Sustainable. Retrieved from Parametric Architecture: https://parametric-architecture.com/the-edge-amsterdam-case-study/#:~:text=production%20and%20consumption,is%20personalised%20to%20their%20comfort

(2023). Tracking Buildings 2023. Paris: International Energy Agency.

What is Digital Twin Technology? (n.d.). Retrieved from AWS: https://aws.amazon.com/what-is/digital-twin/#:~:text=A%20digital%20twin%20is%20a,decisions%20about%20maintenance%20and%20lifecycle

Contact

Fitzemeyer & Tocci Associates, Inc. 300 Unicorn Park Drive, 5th Floor Woburn, MA 01801 www.f-t.com